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A method for calculation of the parameters of an intense beam of charged particles transported by the 

magnetic field of the focusing elements is described, and the results of numerical modeling are presented. 

A high-current  relativistic electron beam (HREB) in a transport  channel is a s ingle-component totally 

ionized nonhomogeneous plasma located in the electromagnetic field of a focusing element. Application of a paraxial 

approximation to the description of the dynamics of particles in the beam makes it possible to use the methods of 

Lie algebra in calculations of the transformation operator that relates initial and final coordinates of a given particle 

in the phase space of canonically conjugate variables [1, 2 ]. The main problem that arises upon solving the problem 

of transport of a charged beam is that of taking into account the effect of the beam's  charge on its properties. A 

self-consistent method for solution of of this problem for beams with static delf-fields is described in [3, 4 ]. In the 

present work, based on a plasma model and methods of Lie algebra, a solution is proposed of the problem of 

transport of a HREB with a t ime-dependent self-field. Calculations are carried out for a cylindrical beam trasported 

by the field of a magnetic focusing element. 

The position of any particle of the beam in six-dimensional space is characterized by the vector ~(x, 3', t. 

Px, Py, Pt). The independent variable z is the coordinate along the reference trajectory of beam particles, x and 3' 

denote the transverse deviation of the trajectory of the given particle from the reference trajectory, t denotes the 

time of particle presence in the conducting channel, and the other three quantities are the corresponding canonical 

momenta. The use of a reference trajectory, implies description of the dynamics of beam particles within a paraxial 

approximation. 

As is known, the most general plasma model is a kinetic description using the distribution function g(~, z) 

of the statistical system of particles. Since for intense beams the interaction parameter  q (the ratio of the mean 

potential energy of particles interaction to the mean kinetic energy of particle free motion) is much less than unity, 

Coulomb interaction of particles prevails over processes of particle collision [5 ]. This means that in calculations of 

the change in the distribution function one can restrict the consideration to a zerolh approximation with respect to 

the interaction parameter ~l, i.e., a change in the particle distribution in a volume of the phase space selected in 

the vicinity of the point ~ takes place only due to the inflow and oulflowing of particles via the surface bounding 

the volume. In other words, g(~, z) satisfies the Liouville equation ~,,(s e, z) = 0 (the dot denotes the total derivative 

of the funclion with respect to the independent variable :.). 

Let us consider the dynamics of an arbitrary particle of the beam. Its lqamiltonian is as follows: 

1 
H (x, v, t, p~, Pv, &: z) = ( I h  + q<l~) ~ 
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- P~ - qA~)  2 c~ (Pv - qAy)  2 c2 2r I /2  �9 �9 - _ - m  : - q A ~ ,  ( 1 )  

where the scalar and vector potentials of the electromagnetic field (l) and A consist of two terms characterizing the 

action of the field of the focusing element and the field of the space charge on lhe particle: 

CI) (x, y; z) = (l) field (x, y; z) + (I~ beam (x, y; z) , 

(2) 
A ( x ,  y; z) = A field (x, y; z) + A beam (.v, y; z) . 

The potentials (D field and A field are considered to be given, and their particular form is determined by the 

particular focusing system used for beam transport. For magnetic focusing elements (quadrupole, solenoid, etc.) 

~field __ 0. The dependence  of the potentials ~beam and A beam on the coordinates is determined bv the main transport 

problem of calculation of the transverse beam dimensions and angular  divergence in an arbi trary cross-section of 

the focusing channel .  

The action of the transformation operator relating the initial and final coordinates of an arbi trary particle 

in the beam in the phase space 

(z) = ,gg '  (z), 

can be considered a canonical transformation. Taking into account thal canonical transformations form a simpleclic 

group, the operator can be factorized, i.e., presented as an infinite product of Lie exponentials of an infinite 

sequence of certain homogeneous polynomials /m [1, 2 I. And since, firstly, the Poisson brackets that determine 

the Lie product are invar iant  with respect to canonical t ransformations arid, secondly, ten generators  of the 

simplectic group realize the representation of the Lie algebra, the polynomials fm can be expressed via polynomials 

H m entering the Hamil lonian.  

In order  to decompose the single-particle Hamiltonian (1) into polynomials wc project the region of lhe 

phase space taken by the given particle at a given value of z on to the region of the phase space of the reference 

particle at the same value of z. This is attained by means of a canonical transformation as a result of which the 

temporal coordinate and  the energy of the beam particle also become linked with the reference trajectory (ils 

parameters are marked with the index 0): 

t = T + t 0 ( z ) ,  x = X ,  y =  Y; 

0 
Pt = PT + Pt ' Px = P X  , Py = P Y "  

For Hamil tonian  (1) written in the new variables 

0 
_ 1_ ( P T  + & + q q ' ) "  - -  = X ,  Y, T ,  PX '  P Y' PT" z) = c 

0 

-- (/))t" -- q"lX )2 C'2 -- (PY -- q"lY )2 c2 -- rr72C4} I 2 _ q"lz _ PI'~ ........... + Pt (3) 
l' 0 

(V0 being lhe velocity' of lhe reference particle) one can expand the radicand into a Taylor series in the vicinity of 

lhc rcfcrcncc t r a j e c l o r y  ( X  = O, Y = O, T = O, P x  = 0, P} = 0, P/.  = 0) and obtain a representation of ,.~/' as an 

infinite sum of homogeneous polynomials H m. 

tf the explicit form of (1)beam and A beam is known and they are decomposed into polynomials over the space 

coordinate one can use Dragt 's  method [ 1,2 ] to express polynomials fro in terms of H,,, and write the t ransformation 

oper [ l lo r , . / /exp l i c i t l y .  In order  to f ind ,//', c.g., wi th accuracy up Io lerms of the four lh  order, one must solve a 

syslcm of lhrec mat r ix  d i f ferent ia l  equations, whose form is presenled in I1, 2 I. 
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In order  to calculate the potentials ~1 )beam a n d  A beam one needs to know the evolution of the distribution 

function of beam particlcs in thc process of beam transport. If wc described HREB dynamics in the 6N-dimensional  

phase space, then the distribution function of the microcanonical ensemble would correspond to the system under 

consideration (single-component totally ionized plasma consisting of N particles). But since we use the formalism 

of the s ix -d imens iona l  phase space, our  sys tem in the equilibrium state is descr ibed  by Gibbs '  canonical 

distribution. Indeed,  the phase space of each i-th particle of the system (i = 1, N) is projected onto the phase space 

of the reference particle. Then, the field of the space charge does not act on the reference particle, therefore its 

kinetic energy remains constant. Each i-th particle is subjected to the action of the field of the space charge, and 

this results in a change in its potential and kinetic energies. However, the mean energy of the system under 

consideration is conserved. As a result of interactions between plasma particles, the transverse four-dimensional 

volume occupied by the system changes. Therefore,  the transverse emittance of the beam should change,  and a 

change in the system takes place. In order  to calculate this variation, one must solve Vlasov's equation combined 

with Maxwell 's system of equations. 

However, an alternate way exists. Each i-th particle of an arbitrary cross-section of the beam is subjected 

to the field of the space charge created by other  particles and descr ibed by potentials  el)beam(x, 3'; z) and  

Abeam(x, y; z). Its form can be considered to be constant along z within the limits of a certain length l exceeding 

the Debye length but less than the free-path length for electrons in the plasma. Therefore,  on each elementary 

portion l of the t ransport  route, particles moving along the z-axis experience the action of the time-invariant 

electromagnetic field. At the same time, along the entire route the distribution function satisfies the Liouville 

equation. Therefore,  in the process of transport the beam as a statistical system transforms successively from one 

equilibrium state to another.  It is evident that the volume occupied by the particles plays here the part of a slowly 

varying parameter  of this adiabatic process. Thus, the distribution function of the quasiequilibrium plasma under 

consideration is functionally Gibbs '  distribution along the entire transport channel and changes solely its shape on 

each elementary portion l. 

Including in the considerat ion the magnetostat ic  field of the focusing element does not disrupt the 

equilibrium in the system since its mean energy does not change. 

For a plasma in a state of statistical equilibrium, the electric and magnetic fields are not interrelated [7 1. 

Therefore,  to calculate A beam on each elementary portion l, one can use the quasistal ionaw approximation I8 1: 

Abeam (X, Y) 0 ,  . beam , beam (X, }3 v0 _ beam X = Ay (X, Y) : O, A z : --~q) (X, Y). 
c 

Thus,  the self-electric field of the beam E beam = - g r a d  cl ")beam appears to be strictly transverse with respect 

to the reference trajectory, and its self-magnetic field B beam = rot A beam is azimuthal. 

In order  to calculate ~)beam and A beam on each elementary portion l, one must know the distribution function 

of particles over the transverse spatial coordinates and corresponding momenta. Usually, in problems of beam 

transport and in numerical modeling of this process it is assumed that the transverse coordinates of particles have 

a Gaussian distribution, whereas the distribution of conjugate momenta is described by Maxwell 's statistics [3, 4 ]: 

1 1 
g ( X ,  Y ,  PX,  t ' y ) -  _ _  • 

Z,r ",/ O x % ,  Z,r ~/ ~ x a r  

1 ( X - a )  2 1 ( y _ / 3 )  2 1 ( P x - y ) 2  1 ( P r - 6 )  2 

:'< cxp - 2 a x 2 ay  2 .ax - 2- ..... 3~7y-- ' (4) 

where a, [3, y, and 6 are the expected values of the random quantities X, Y, Px, /'Y; ax,  cry,),x, .a.r are variances 

of these quantities. 

According to (4), the expression for the volume density of the beam charge p ( X ,  )3 on each elementary 

portion l is as follows: 
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Fig. 1. Var ia t ions  in t ransverse  d imens ions  of e lect ron beam moving in 

homogeneous  magnetic field: 1) Bo = 30 G; 2) 40; 3) .50. z, r, m. 

l<X x ) l f2"- /s)2 p ( X ,  Y) - I 1 exp - 2 - 2 Oy 
v o 2x~/Crxe v 

(s) 

where I is the cur ren t  of the beam being t ransported.  

Then the value of el 5beam on a part icular  t ransport  portion is calculated using Green ' s  function as a solution 

of the two-dimens ional  Dirichlet  boundary-va lue  problem for Poisson 's  equation: 

beam _ _  1 
(Xo, Yo)= f f  d.vdY P-- 1 In (61 

(xy) e 0 2~ ~ / ( x -  Xo) 2 + ( y -  yo) 2 

where e 0 is the dielectr ic  constant  of vacuum. 

The  polynomial  expans ion  of ~l)beam(x, }') on each e lementary  portion l can be performed using the method 

of least squares.  In o rde r  to do this, a t ransverse grid is super imposed on the t ransverse  cross-sect ion of the beam, 

the values of el)beam are  calculated at the nodes of the grid according to (6), and then the tabula ted  function is 

approx imated  by homogeneous  polynomials .  Cor respondingly ,  the coefficients of the polynomial  expans ion  of 

Abeam(x, Y) will d i f fer  by the vo/c 2 multiplier.  

Thus,  the scheme for calculation of the basic parameters  of the HREB in the process of t ranspor t  looks as 

follows. The  initial c ross-sec t ion  of the beam is represented  by probe particles whose dis t r ibut ion function over the 

transverse coordina tes  and  momenta  is de te rmined  by the expression (4). From (6) we find numerical ly  the values 

of ',1~ beam at the nodes of the grid super imposed on the cross-sect ion by calculating the integral ,  e.g., by Gauss '  

method over a hyper rec tangle .  Then functions el)beam(x, Y) and Abeam(x, Y) are approximated  by homogeneous  

polynomials up to the fourth o rder  and subst i tuted into the Hamil tonian  (3), and we find express ions  for H m. 

Solving numerica l ly  the sys tem of three matrix differential  equations,  e.g., by the R u n g e - K u t t a - M e r s o n  method,  

we obtain the explicit  form of the t ransformat ion ope ra to r , I t .  With its help we find the coordinates  and momenta  

of the probe part icles at the end of lhe first e lementary  portion. By calculat ing the mean values and variances of 

lhe t ransverse  coord ina tes  and momenta  of probe particles,  and their  energy spectrum, we obtain the initial da ta  

on the probe part icles  for calculat ions in the next t ransport  portion. By repeat ing the procedure of evaluat ion of the 

potentials of the field of the space charge of lhe beam and Ihe t ransformat ion operator ,  we carry  out calculat ions 

in succeeding steps. 

Based on the a fo re -desc r ibed  algori thm, lhe TRLIE software for a PC was developed for calculat ions of 

HREB parameters  in a t ranspor t  channel  with magnetic focusing elements.  

By way of example  let us consider  the change in the beam radius  under  s trong focusing in a solenoid 

(plasma cy l inder  of rad ius  r 0 in a constant  magnetic field B0). Results  of calculations using the TRLIE program 

for various values of B 0 are  presented  in Fig. 1. The calculations were carr ied out for a HREB with a kinetic energy 
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TABLE 1, Charac ter i s t ics  of Surface Waves in the Beam and Plasma 

E, MeV k, m -1 w, sec - I  uJ, sec - I  

1 

1.5 

2 

1.70 

1.28 

1.03 

2.77-109 

2.88.109 

2.93.109 

2 .51.109 

2.72.109 

2.80-109 

of 10 keY, a current of 10 kA, and initial radius of I0 cm, and an initial scatter in transverse velocities equal Io 

1% of the longitudinal velocity of particles. The cross-section of the beam was represented by 100 probe particles. 

The obtained oscillations of the boundary of the beam can be identified with surface oscillations of a plasma 

spatially confined by an external longitudinal magnetic field. The dispersion equation for axisymmetric modes 

yields the following expression for the spectrum of those Iongwave oscillations (the frequency ~,J does nol exceed 

the plasma frequency c~ L) [71: 

2 2 
2 k2 mLr 0 1 (7) 

~o = - - f - I T ' ,  k~o" 

Table  1 presents  values of the wavenumber  k and frequency co of surface waves ob ta ined  using the TRLIE 

software for various values of induction of the focusing magnetic  field and values of co calculated from (7). 

Here we should point out the following circumstances.  Firs t ly ,  frequencies u~ and w are  ca lcula ted  in 

different  frames: co - in the labora tory  frame and w in a frame moving along with the beam. Mult iplying w by the 

Lorentz factor) ,  we obtain the values of frequencies of the surface oscil lat ions of the beam in the labora tory  frame. 

Secondly,  since oscil lat ions of the beam boundary  manifest  themselves as oscil lat ions of the radius  of the beam 

cross-sect ion,  it seems natural  to consider  their  phase velocity to be equal to the velocity of lhe reference particle 

of the beam. Th i rd ly ,  we take the minimum value of the HREB radius  r 0 as a pa ramete r  of plasma inhomogenei ty .  

According to the da ta  from Table  1, the modeling results  agree with the known facts of p lasma physics.  

The  proposed model  of quasiequil ibr ium plasma and methods of Lie a lgebra  make it possible to calculate 

the basic parameters  of a t ranspor led  HREB. In addi t ion,  it helps to relate  phenomena  that lake place in a beam 

of charged part icles moving in an external  e lectromagnet ic  field to processes that take place in spat ia l ly  confined 

s ingle-component  coll isionless plasma. 

The  work was carr ied  out under  financial support  from the Fundamen ta l  Research Fund of the Republic  

of Belarus, grant  No. MP 41-94. 
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